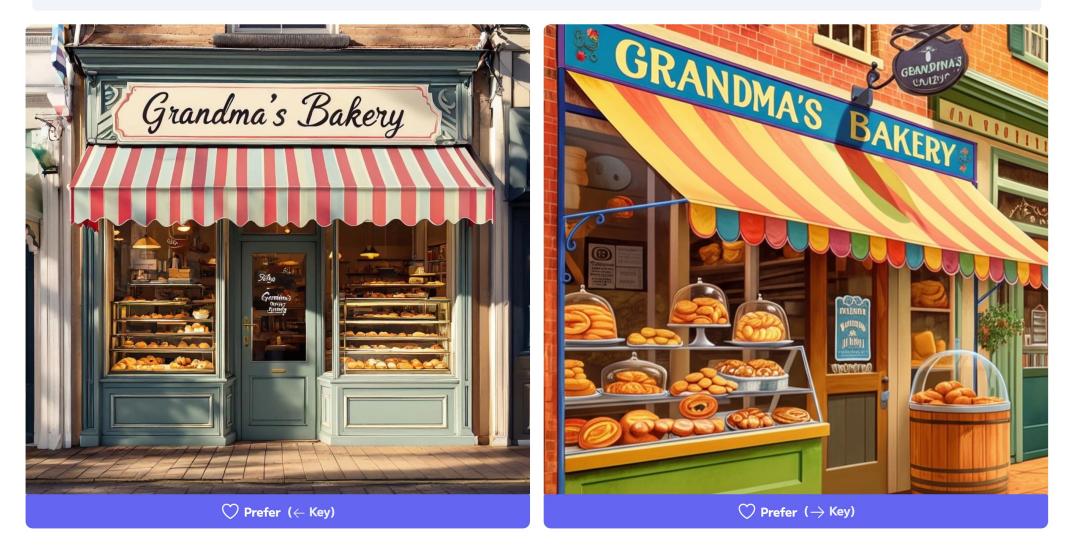
Evaluating Generative Models

Jun-Yan Zhu 16-726 Learning-based Image Synthesis

Pairwise Comparison (A/B test, user preference)

Which image best reflects this prompt?

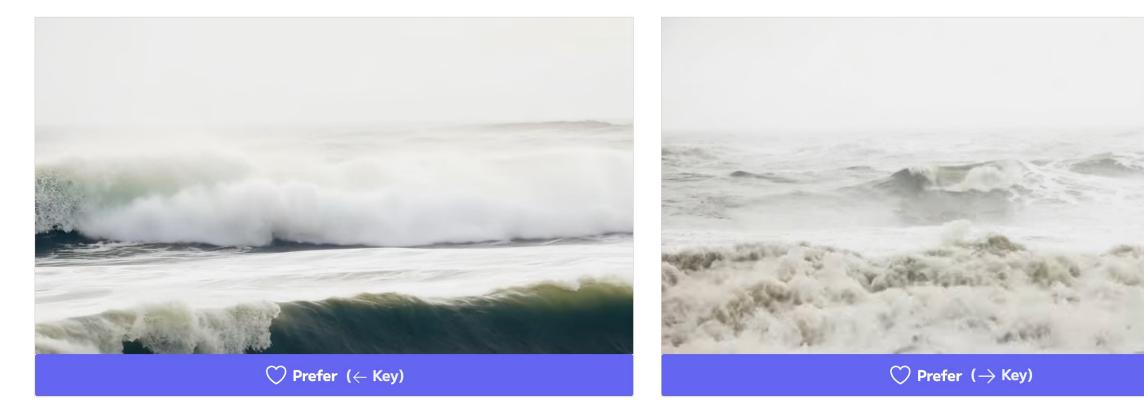
A charming, old-fashioned bakery storefront with a hand-painted sign reading "Grandma's Bakery", colorful awnings, and a display of fresh pastries, photorealistic exterior



https://artificialanalysis.ai/text-to-image/arena

Which video best reflects this prompt?

Waves rise higher and crash forward, sending spray and foam cascading through the air.



https://artificialanalysis.ai/text-to-video/arena

Compute ELO ranking $E_A = \frac{1}{1 + 10^{(R_B - R_A)/c}}$ $E_B = \frac{1}{1 + 10(R_A - R_B)/c} = 1 - E_A$

E: expected outcome R: current score c: constant (=400)

Compute ELO ranking

E: expected outcome R: current score c: constant (=400)

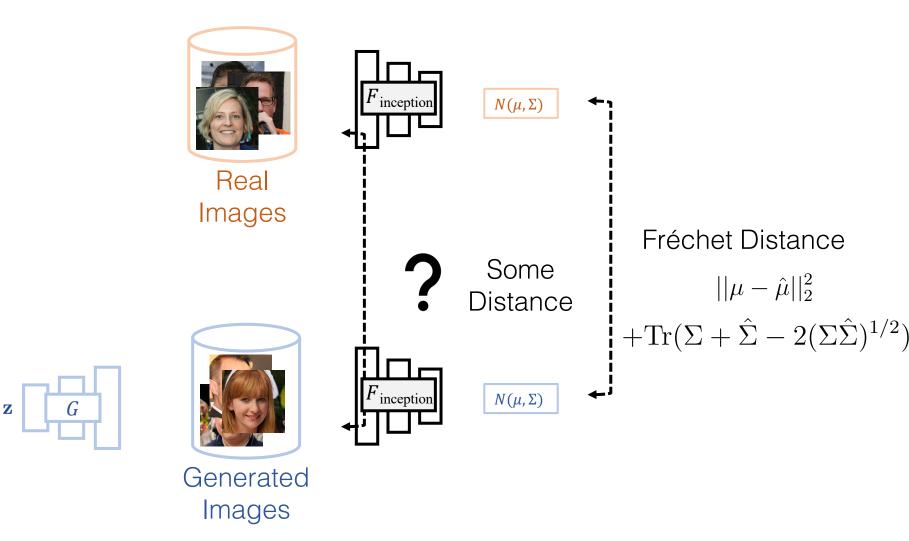
$$E_A = \frac{1}{1 + 10^{(R_B - R_A)/c}}$$
$$E_B = \frac{1}{1 + 10^{(R_A - R_B)/c}} = 1 - E_A$$

R': new score R: current score K: constant (=32) S: actual outcome

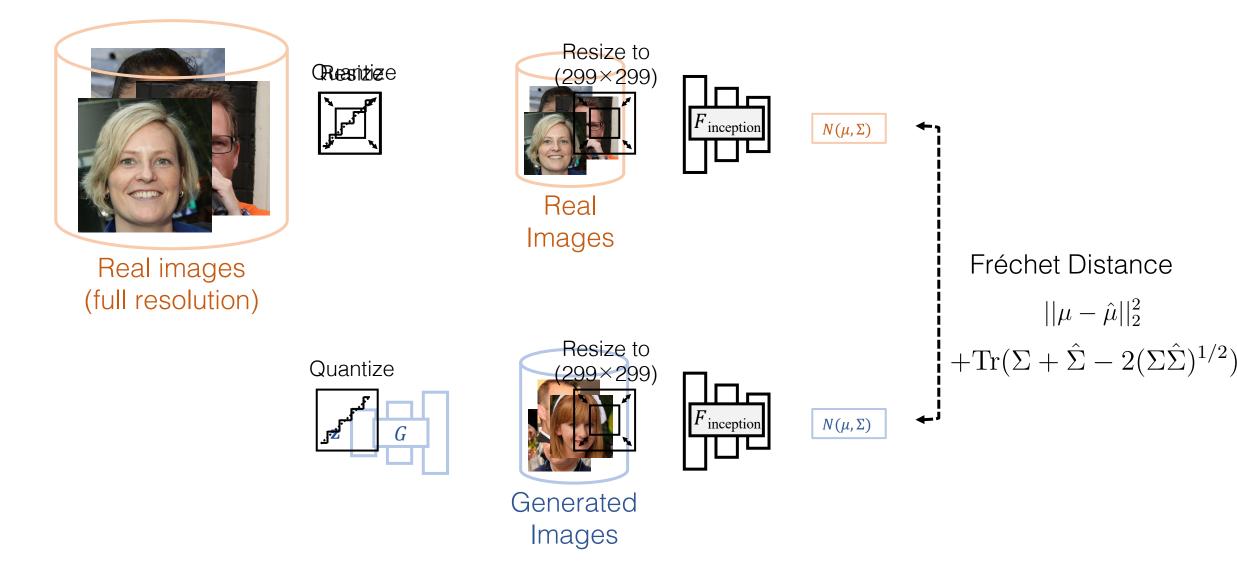
 $R'_A = R_A + K \cdot (S_A - E_A)$ $R'_B = R_B + K \cdot (S_B - E_B)$

Automated Metrics

Fréchet Inception Distance (FID)



Fréchet Inception Distance (FID)

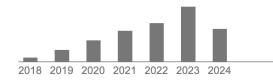


FID is being widely used

GANs trained by a two time-scale update rule converge to a local Nash equilibrium

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp Authors Hochreiter Publication date 2017 Advances in Neural Information Processing Systems Conference Pages 6626-6637 Generative Adversarial Networks (GANs) excel at creating realistic images with complex Description models for which maximum likelihood is infeasible. However, the convergence of GAN training has still not been proved. We propose a two time-scale update rule (TTUR) for training GANs with stochastic gradient descent on arbitrary GAN loss functions. TTUR has an individual learning rate for both the discriminator and the generator. Using the theory of stochastic approximation, we prove that the TTUR converges under mild assumptions to a stationary local Nash equilibrium. The convergence carries over to the popular Adam optimization, for which we prove that it follows the dynamics of a heavy ball with friction and thus prefers flat minima in the objective landscape. For the evaluation of the performance of GANs at image generation, we introduce the Fréchet Inception Distance"(FID) which captures the similarity of generated images to real ones better than the Inception Score. In experiments, TTUR improves learning for DCGANs and Improved Wasserstein GANs (WGAN-GP) outperforming conventional GAN training on CelebA, CIFAR-10, SVHN, LSUN Bedrooms, and the One Billion Word Benchmark.

Total citations Cited by 12274



FID is being widely used

Image Generation on ImageNet 256x256

FID is being widely used

Text-to-Image Generation on MS COCO



Why is FID so popular?

- Better than other metrics
 - vs. Inception Score (IS), density estimate with Parzen window
- Model agnostic
 - vs. Perceptual Path Length (PPL) and log likelihood
- Cheap and fast to compute
 - vs. Classification Accuracy Score
- Cover both diversity and realism
 - vs. precision and recall
- Easy to reproduce
 - vs. user studies

Known issues with FID

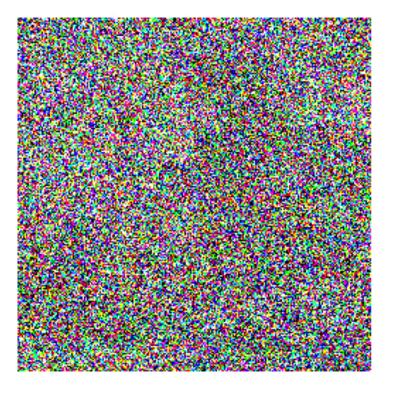
- The Gaussian Assumption.
- The large number of images required.
- The low-level image processing details.
- The choice of feature extractor.

Known issues with FID

• The Gaussian Assumption.

Our goal is to model complex distribution

• Two Gaussian Toy Example



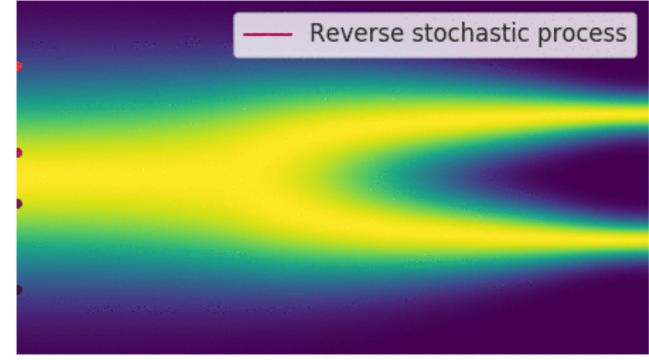


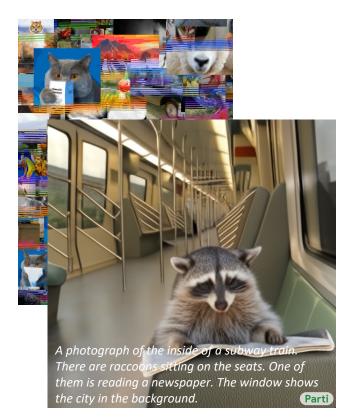
Image credit: Yang Song

Single-category dataset

Flickr-Faces-HQ Dataset (FFHQ) [Karras et al., 2018]

In the wild text-to-image synthesis

Diffusion models (DALL-E 2, Imagen, SD)



Autoregressive models (Image GPT, Parti)

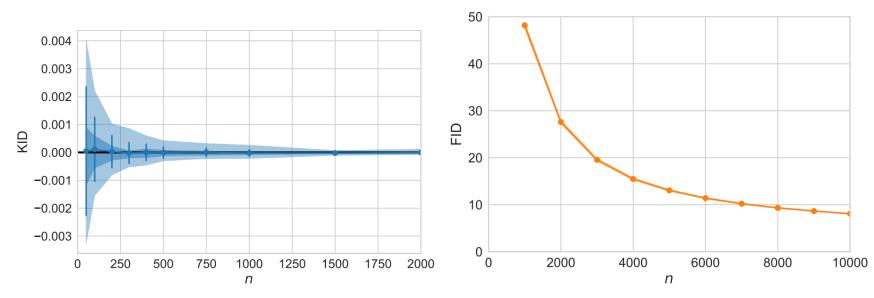
GANs, Masked GIT (GigaGAN, MUSE)

Known issues with FID

- The Gaussian Assumption.
- The large number of images required.

FID vs. Kernel Inception Distance (KID)

- Computing covariance matrix requires lots of samples.
 - At least 2048 (for 2048d features), preferably 10K-50K.
 - Use KID if you have a small training/test set.



(a) KID estimates are unbiased, and standard deviations shrink quickly even for small n.

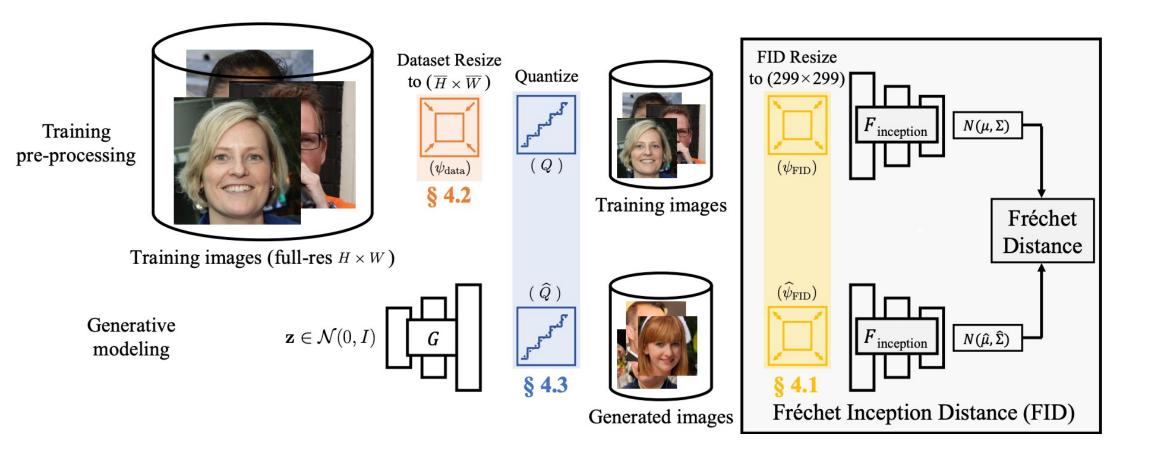
(b) FID estimates exhibit strong bias for n even up to 10000. All standard deviations are less than 0.5.

[Binkowski et al., ICLR 2018], [Chong and Forsyth., CVPR 2020]

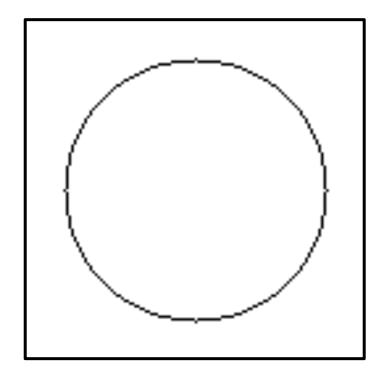
Known issues with FID

- The Gaussian Assumption.
- The large number of images required.
- The low-level image processing details.

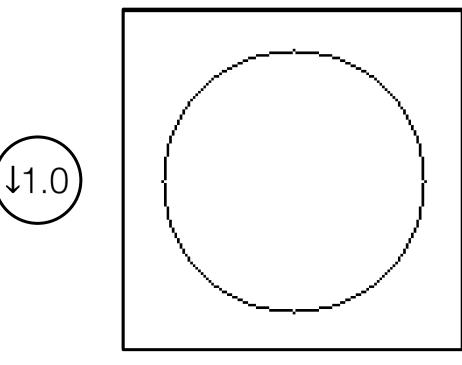
Low-level image processing details

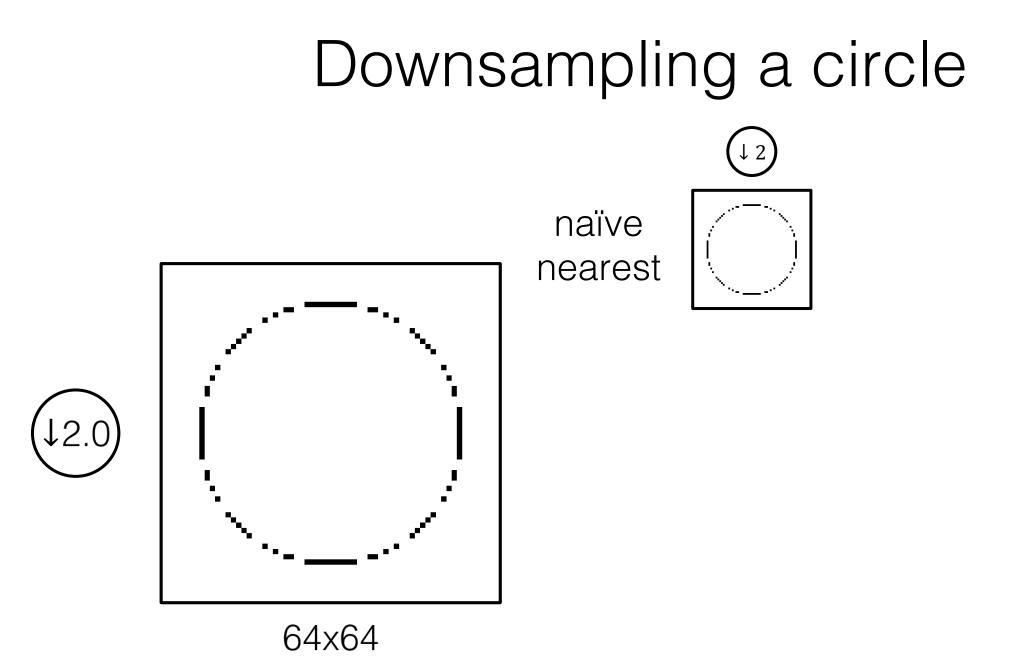


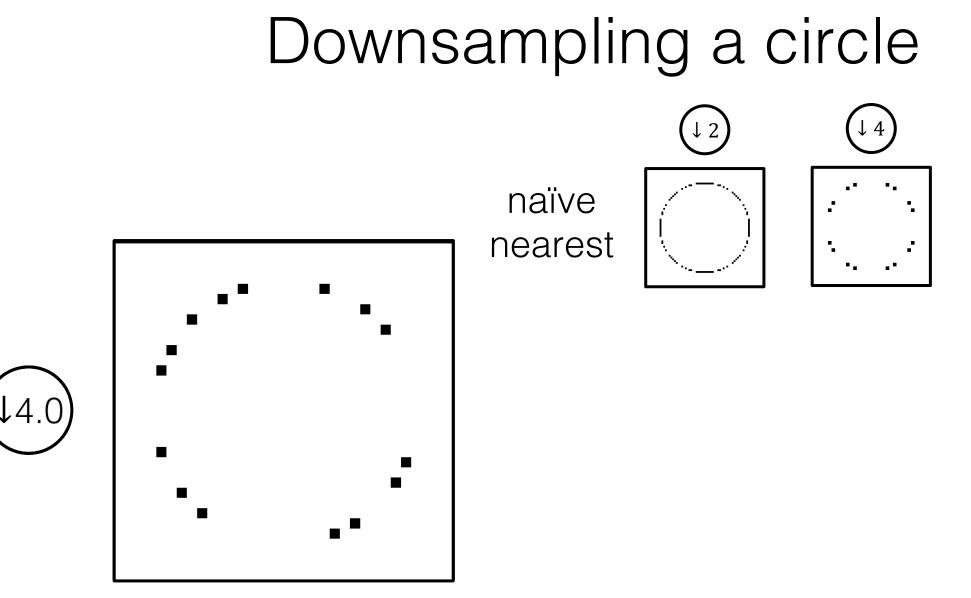
input image

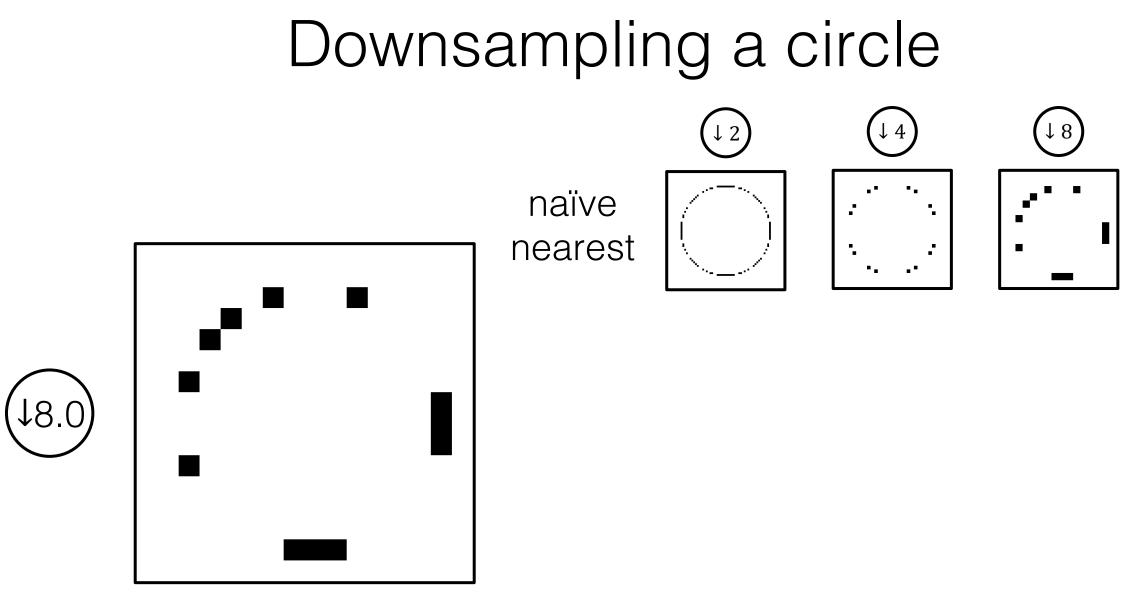


naïve nearest

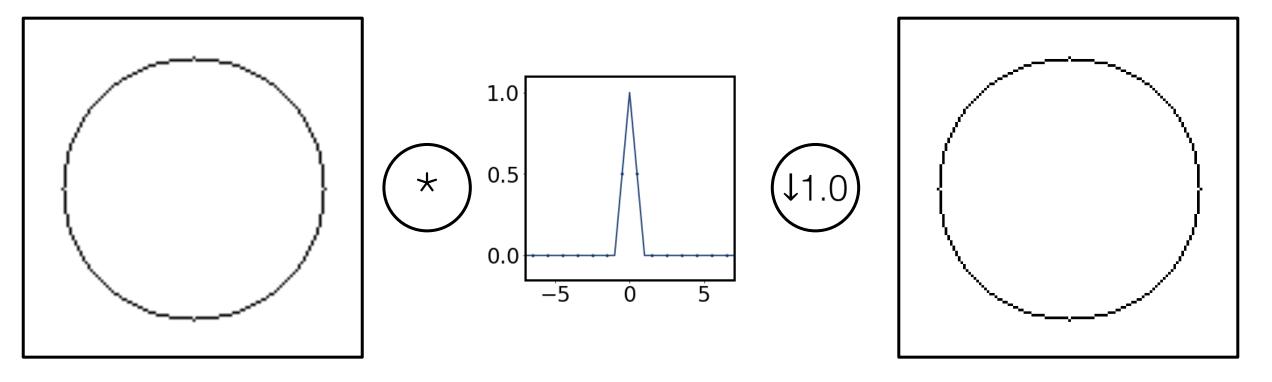


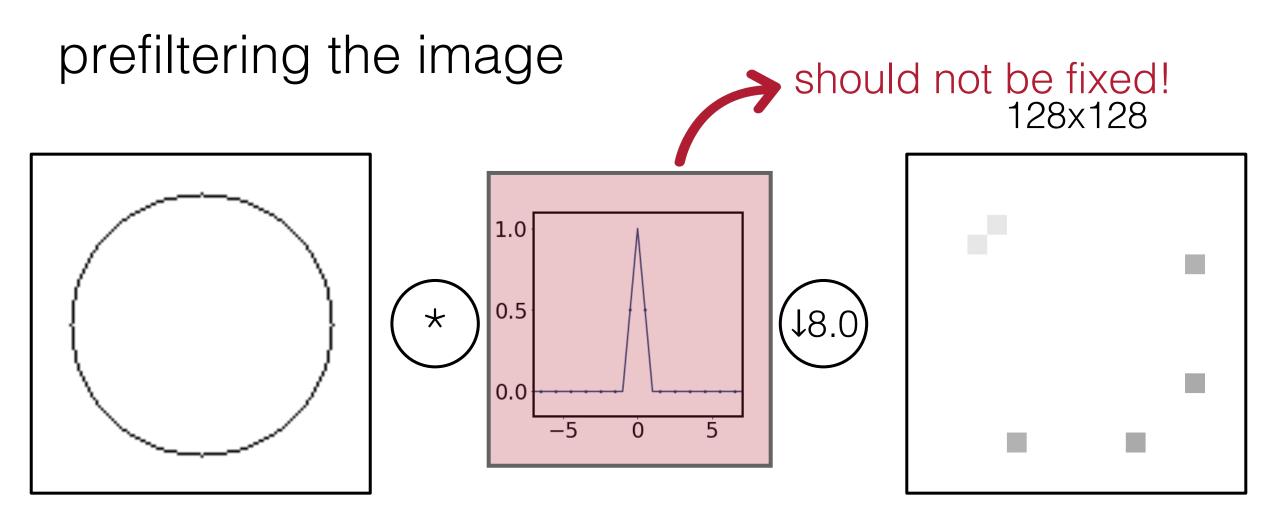




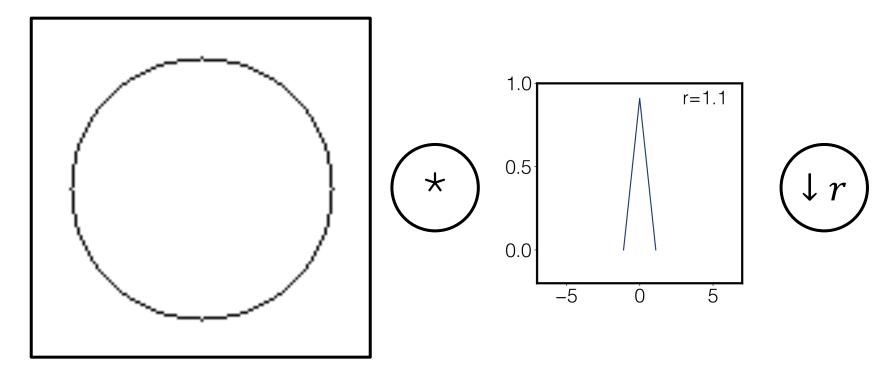


prefiltering the image

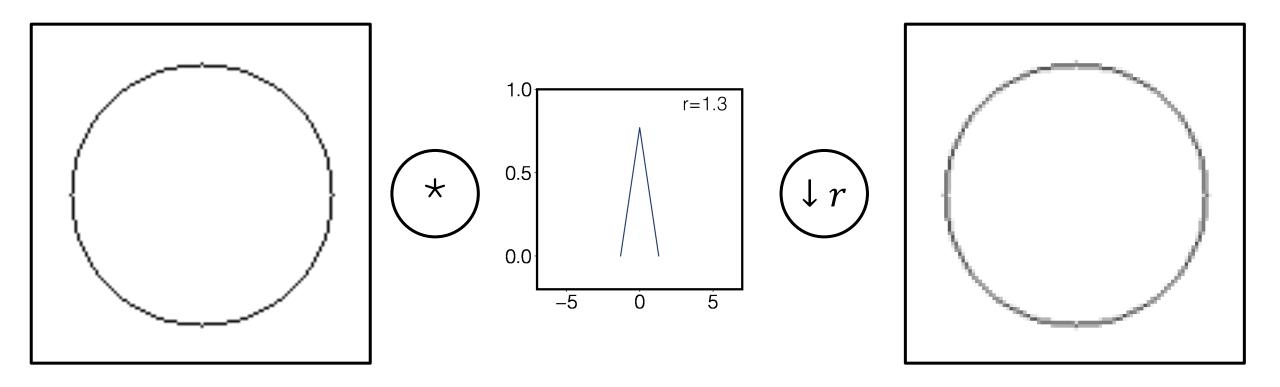


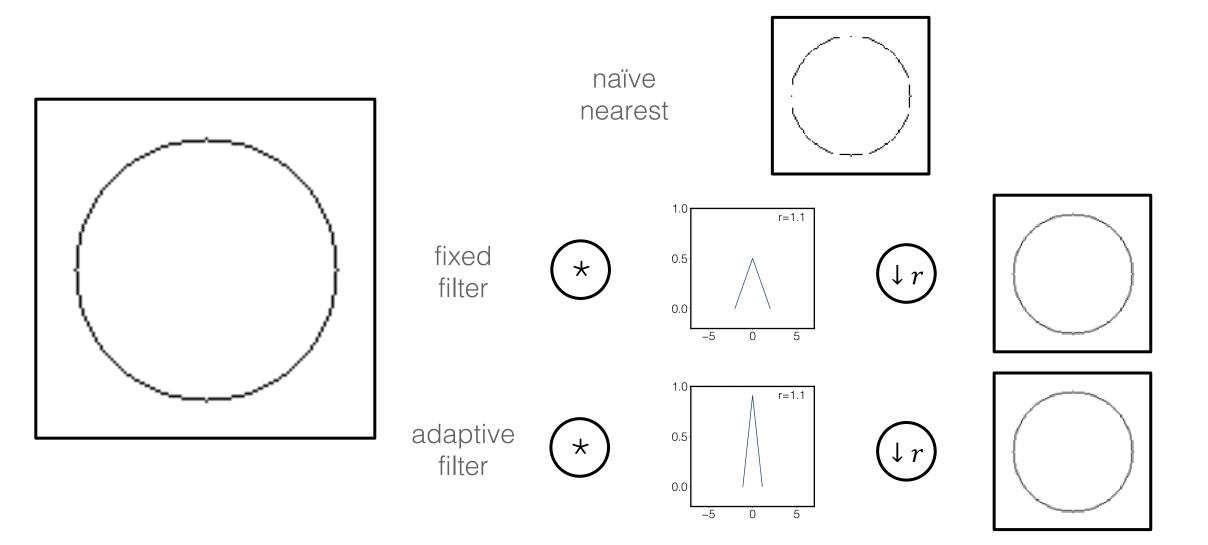


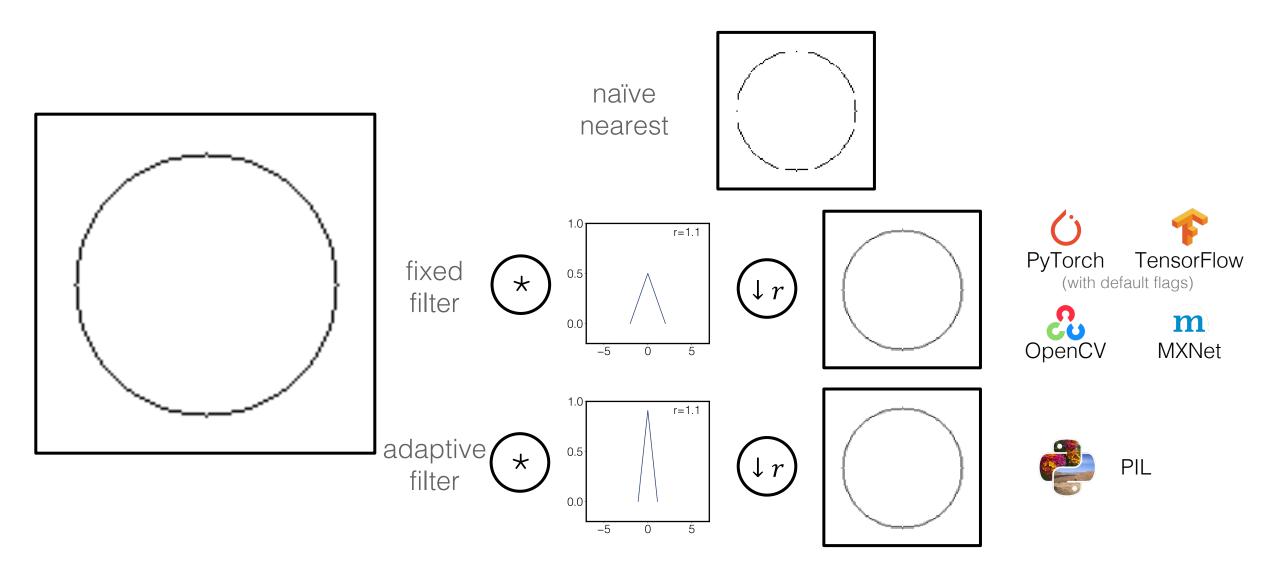
prefiltering the image, adapting the width

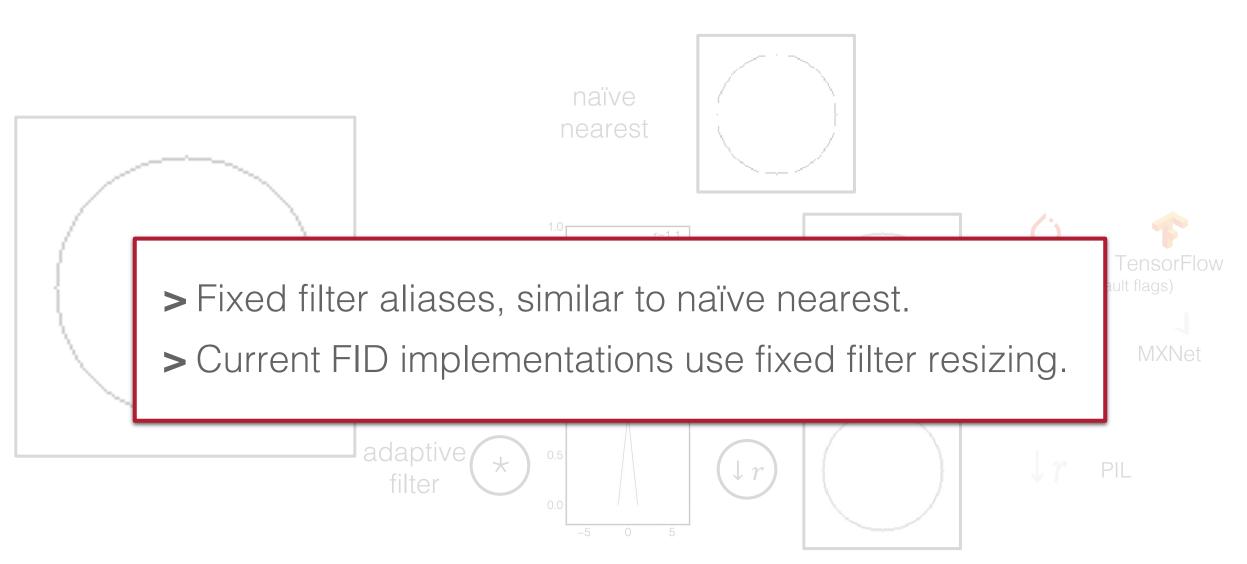


prefiltering the image, adapting the width









Downsampling an FFHQ image

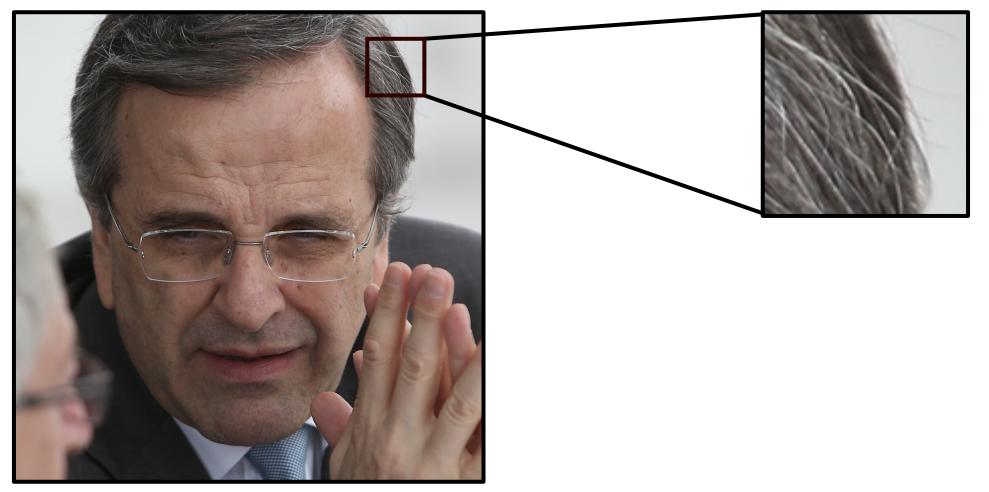
1024

Downsampling an FFHQ image

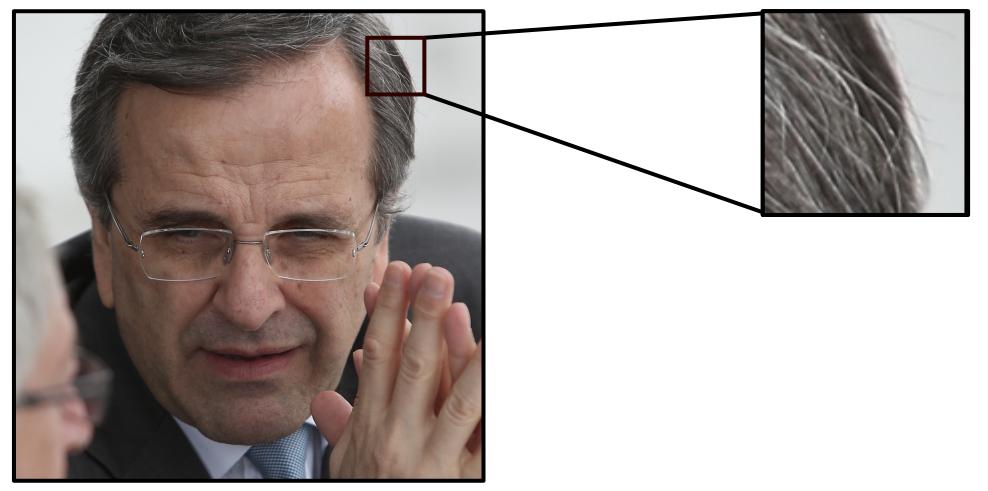
adaptive-width prefilter

fixed-width prefilter

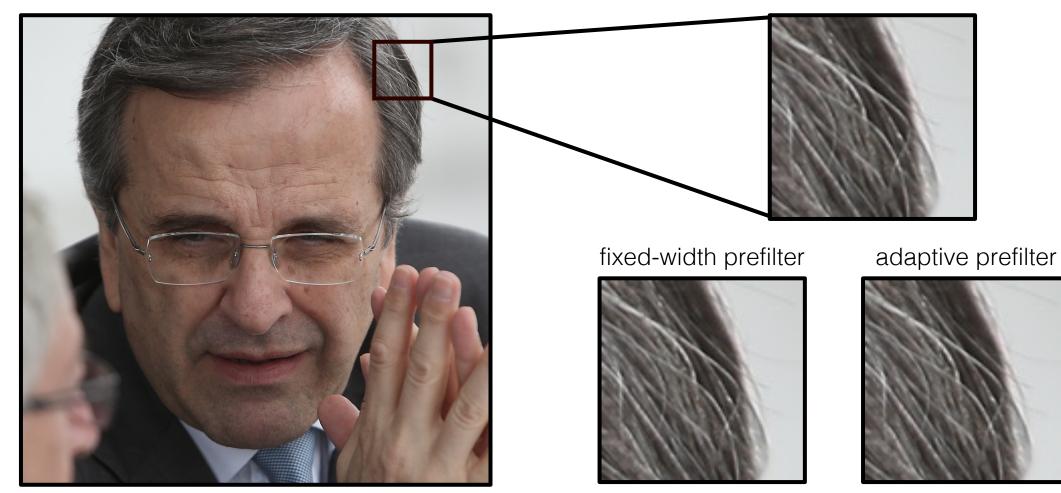
1024



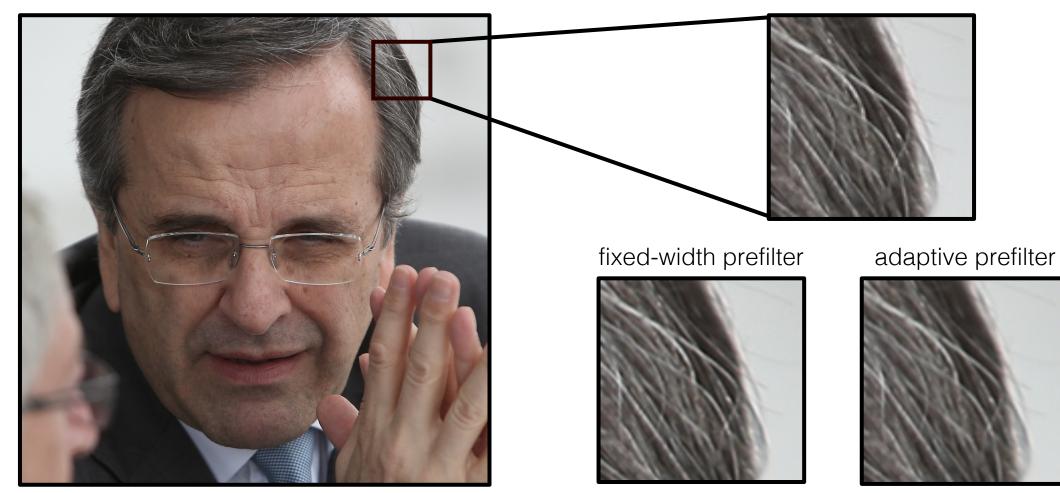
1024



1024



1024



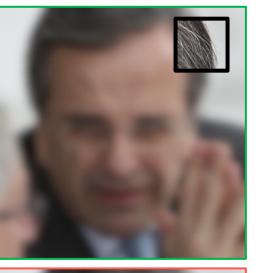
1024

Changes in Inception Features

adaptive prefilter

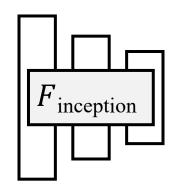
fixed-width

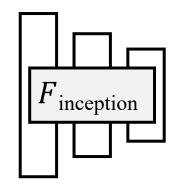
prefilter

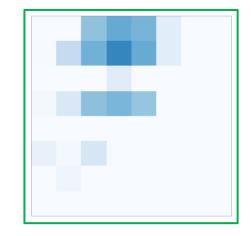


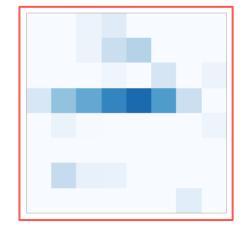
Changes in Inception Features

adaptive prefilter

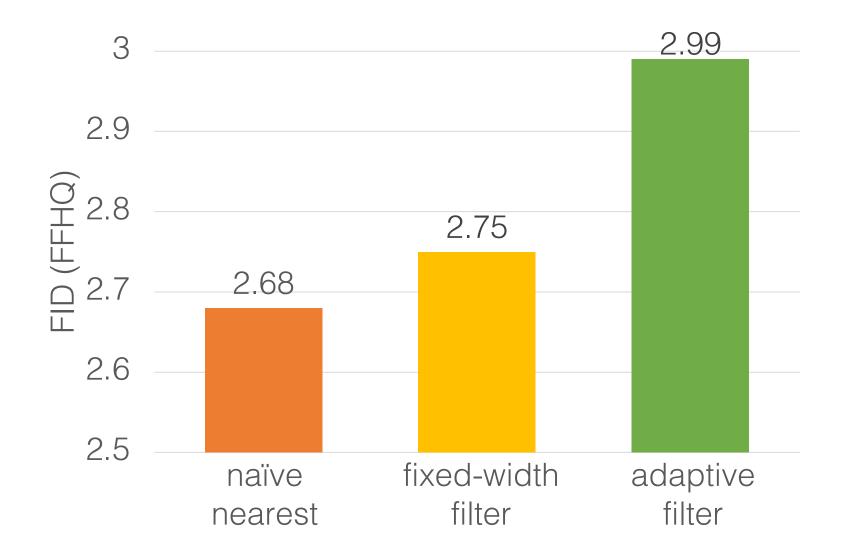




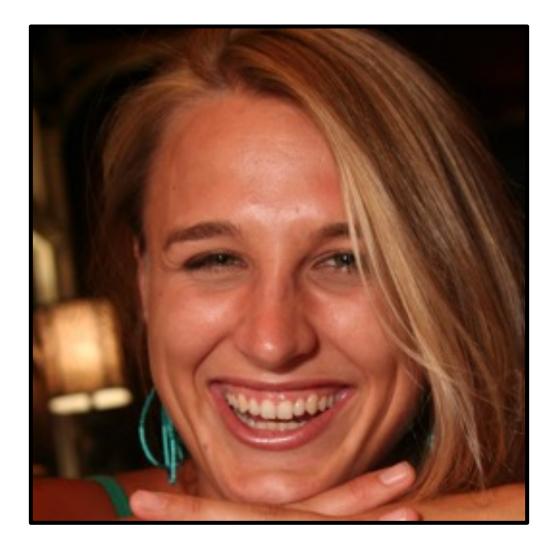




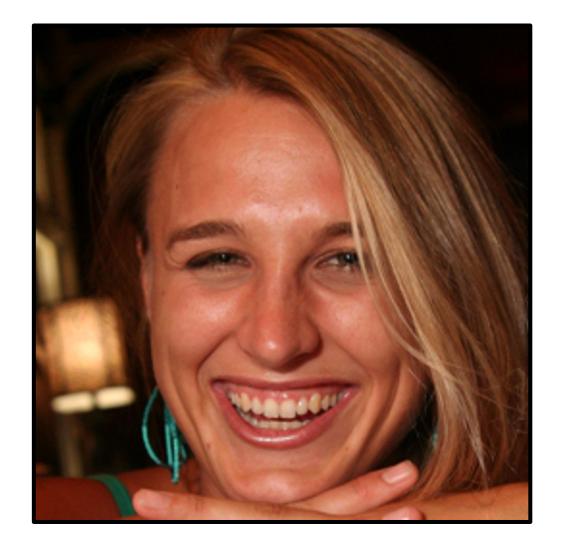
Changes in FID



- Different resizing functions result in vastly different evaluation scores.
- aliased resizing deceptively causes improvements in the metric.



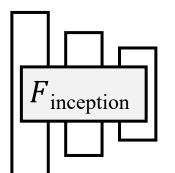
PNG (uncompressed)

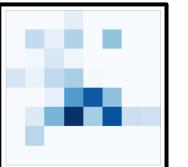


PNG (uncompressed) JPEG quality = 99

PNG (uncompressed) JPEG quality = 75

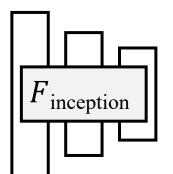
PNG (uncompressed) JPEG quality = 75

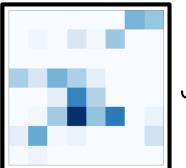




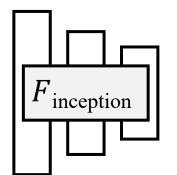
JPEG-75

PNG (uncompressed) JPEG quality = 75



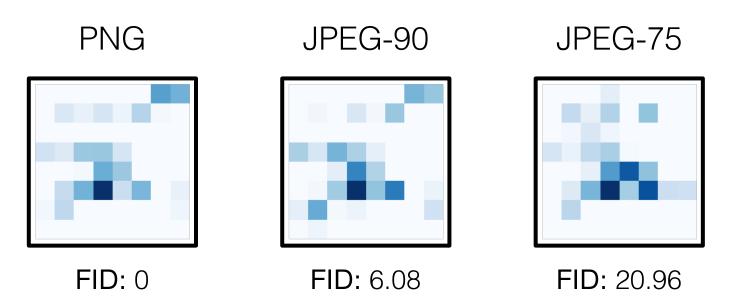


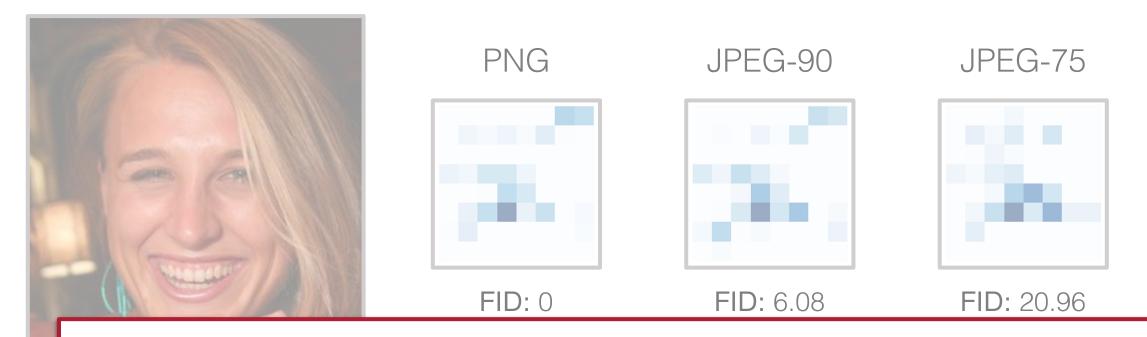
JPPEEG905



PNG

PNG (uncompressed)





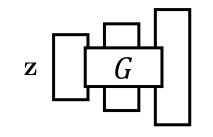
Compressed images look near identical to original.Compression changes features and downstream metrics.

JPEG Compression - Dataset

LSUN Outdoor Churches Dataset (JPEG-75 compressed)

FID: 4.00

Generated Images



JPEG Compression - Dataset

Discussion

> Evaluating generative models involves many steps.> Image resizing and compression are crucial.

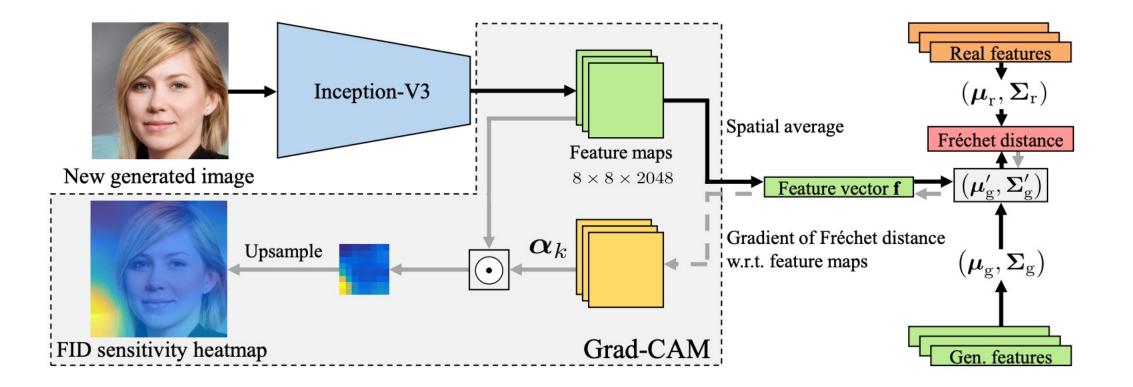
Recommendations

- > Pre-filter the image adaptively when resizing.
- > Avoid Lossy compression schemes.
- > Try out our library. (downloaded 20M+ times) pip install clean-fid

Known issues with FID

- The Gaussian Assumption.
- The large number of images required.
- The low-level image processing details.
- The choice of feature extractor.

The choice of feature extractor



The Role of ImageNet Classes in Fréchet Inception Distance. Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, Jaakko Lehtinen. ICLR 2023

The choice of feature extractor

The Role of ImageNet Classes in Fréchet Inception Distance. Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, Jaakko Lehtinen. ICLR 2023

Replace Inception Network with CLIP

FID = 5.28, Recall = 0.45, $FID_{CLIP} = 4.67$

(a) Projected FastGAN

(b) StyleGAN2

FID = 5.30, Recall = 0.46, $FID_{CLIP} = 2.76$

FID-CLIP

The Role of ImageNet Classes in Fréchet Inception Distance. Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, Jaakko Lehtinen. ICLR 2023

What about Video Generation?

Fréchet Video Distance (FVD)

- f_i : N features extracted from a pretrained I3D network
- (μ_r, Σ_r) : mean and covariance of the features from real videos
- (μ_g, Σ_g) : mean and covariance of the features from generated videos

The performance of the video generator is then measured as:

$$FVD = \|\mu_r - \mu_g\|_2^2 + Tr\left(\boldsymbol{\Sigma}_r + \boldsymbol{\Sigma}_g - 2\left(\boldsymbol{\Sigma}_r \boldsymbol{\Sigma}_g\right)^{\frac{1}{2}}\right)$$

FVD [Unterthiner, et al. arXiv, 2022]

Does FVD Align with Human Perception?

There are several issues with FVD metric on its own. First, it does not capture motion collapse, which can be ob-

datasets. We conjecture the unusual decrease of the FVD w.r.t. the duration of	
DIGAN and TATS-hierarchical on Sky Time-lapse can be explained by that the	l
I3D model [7] used to calculate FVD is trained on Kinetics-400 dataset, and the	
sky videos can be outliers of the training data and lead to weak activation in the	
logit layers and therefore such unusual behaviors. We further perform qualitative	

for our model. Another issue with FVD calculation is that it is biased towards image quality. If one trains a good image generator, i.e. a model which is not able to generate any videos at all, then FVD will still be good for it even despite the fact that it would have degenerate motion.

The commonly used Fréchet video distance (FVD) [57] attempts to measure similarity between real and generated video distributions. We find that FVD is sensitive to the realism of individual frames and motion over short segments, but that it does not capture long-term realism. For example, FVD is

StyleGAN-v [Skorokhodov, et al. CVPR, 2022] TATS [Ge, et al. ECCV, 2022] LongVideoGAN [Brooks, et al. NeurIPS, 2022] VideoPhy [Bansal, et al. arXiv, 2024]

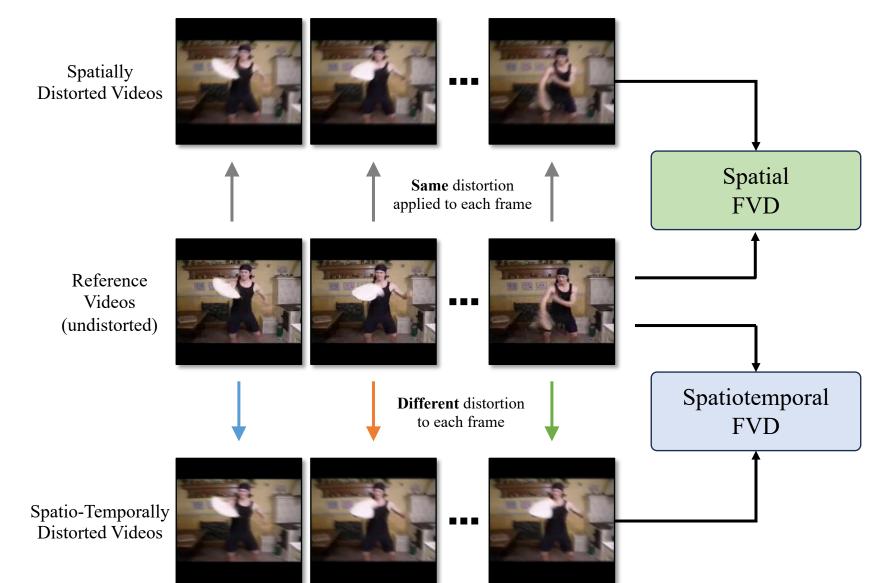
FVD is biased towards per-frame quality than temporal consistency

Reference Videos

Medium Spatial Corruption No Temporal Corruption FVD=317.10

Small Spatial Corruption Severe Temporal Corruption FVD=310.52

Quantifying Temporal Sensitivity



Quantifying Temporal Sensitivity

Corruption

Temporal corruption doesn't affect frame quality

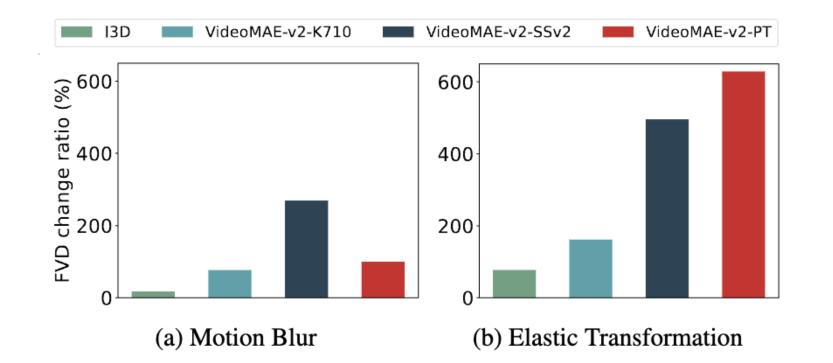
Metric	Distortion	UCF-101	Sky Time-lapse	FaceForencis	Taichi-HD	SSv2	Kinectics-400
FID	Spatial	133.15	79.11	80.42	169.76	100.65	112.22
ГID	Spatiotemporal	$133.69_{(+0.4\%)}$	$79.35\scriptscriptstyle (+0.3\%)$	$79.57_{(-1.1\%)}$	$170.10_{(+0.2\%)}$	100.62(-0.0%)	$112.85_{(+0.6\%)}$
FVD	Spatial	1460.18	211.08	354.49	1016.78	594.68	996.71
ΓVD	Spatiotemporal	$1705.27_{(+16.8\%)}$	$286.39\scriptscriptstyle (+35.7\%)$	$367.35\scriptscriptstyle (+3.6\%)$	$1201.35\scriptscriptstyle (+18.2\%)$	$678.08\scriptscriptstyle (+14.0\%)$	$1155.53_{(+15.9\%)}$

Temporal corruption doesn't affect frame quality

Metric	Distortion	UCF-101	Sky Time-lapse	FaceForencis	Taichi-HD	SSv2	Kinectics-400
FID	Spatial	133.15	79.11	80.42	169.76	100.65	112.22
ГID	Spatiotemporal	$133.69_{(+0.4\%)}$	$79.35_{(+0.3\%)}$	$79.57_{(-1.1\%)}$	$170.10_{(+0.2\%)}$	100.62(-0.0%)	$112.85_{(+0.6\%)}$
FVD	Spatial	1460.18	211.08	354.49	1016.78	594.68	996.71
ΓVD	Spatiotemporal	$1705.27\scriptscriptstyle (+16.8\%)$	$286.39_{(+35.7\%)}$	$367.35\scriptscriptstyle (+3.6\%)$	$1201.35_{(+18.2\%)}$	$678.08\scriptscriptstyle (+14.0\%)$	$1155.53_{(+15.9\%)}$

=VD's temporal sensitivity =
$$\frac{FVD_{spatiotemporal} - FVD_{spatial}}{FVD_{spatial}} \times 100\%$$

Understand temporal sensitivity by comparing with self-supervised video features

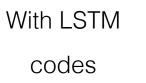


CLIP-FID [Kynkäänniemi, et al. arXiv, 2022] I3D [Carreira et al. CVPR, 2017] VideoMAE-v2 [Wang et al. CVPR, 2023]

Case Study

Case study: StyleGAN-v

Default StyleGAN-V



StyleGAN-v [Skorokhodov, et al. CVPR, 2022]

Case study: StyleGAN-v

FVD Feature	StylegGAN-v	w/LSTM codes
I3D	190.82	172.71(-18.11%)
VideoMAE-SSv2	332.80	616.74(+283.94%)
VideoMAE-K710	155.51	191.48(+35.97%)

StyleGAN-v [Skorokhodov, et al. CVPR, 2022]

Discussion

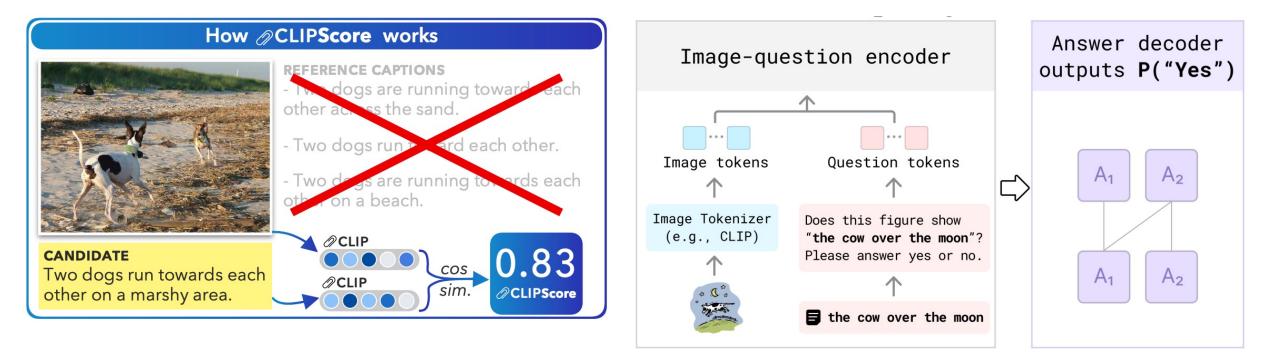
- FVD is highly biased towards per-frame quality over temporal consistency.
- Using self-supervised features improve its sensitivity to the temporal quality.
- Our new FVD toolbox

(<u>https://github.com/songweige/content-debiased-fvd</u>) is available with pip install cd-fvd.

Summary

- FID lovers: Our state-of-the-art model improves MSCOCO FID from 6.8 to 6.75.
- FID haters: we should stop using metrics and just look at the pixels.
- Current takes: (1) use metrics with careful implementations; (2) use multiple evaluation protocols. (3) evaluate it on downstream applications.

Evaluation with (Multimodal) LLM



CLIPScore: A Reference-free Evaluation Metric for Image Evaluating Text-to-Visual Generation with Image-to-Text Captioning. Jack Hessel e al., 2021 Generation. Zhiqiu Lin e al., 2024.

Text Prompt	🌀 DALL·E 3	Midjourney v6	🔇 SD-XL	👽 DeepFloyd-IF
The brown dog chases the black dog around the tree.				¢ ×
VQAScore (Ours)	9.90	0.69	0.60	0.32
Human	힂 4.67	4.00	3.00	2.67
CLIPScore	0.27	👷 0.31	0.28	0.25

Text Prompt	🌀 DALL·E 3	Midjourney v6	🔇 SD-XL	👽 DeepFloyd-IF
A young man is holding a blue bat and a green ball.				
VQAScore (Ours)	힂 0.97	0.96	0.87	0.52
Human	9 4.33	3.67	2.33	2.33
CLIPScore	0.28	0.30	👷 0.34	0.31

Toyt Prompt	⑤ DALL·E 3	Midiourpovve	🕜 SD-XL	👽 DeepFloyd-IF
A snowy landscape with a cabin, but no smoke from the chimney.	TALL'E S	Midjourney v6		Deeprioyd-ir
VQAScore (Ours)	0.15	0.10	🤮 0.74	🤮 0.74
Human	2.67	2.33	힂 4.67	힂 4.67
CLIPScore	0.28	👷 0.32	0.30	0.26
Text Prompt	S DALL·E 3	Midjourney v6	C SD-XL	👽 DeepFloyd-IF
Two bicycles leaning against a wall with three windows.				
VQAScore (Ours)	0.94	0.94	0.95	Q 0.96
	0.94 2.67	0.94 2.67	0.95 4.00	Q 0.96 Q 4.67

Toyt Prompt	⑤ DALL·E 3	Midiourpovve	🕜 SD-XL	👽 DeepFloyd-IF
A snowy landscape with a cabin, but no smoke from the chimney.	TALL'E S	Midjourney v6		Deeprioyd-ir
VQAScore (Ours)	0.15	0.10	🤮 0.74	🤮 0.74
Human	2.67	2.33	힂 4.67	힂 4.67
CLIPScore	0.28	👷 0.32	0.30	0.26
Text Prompt	S DALL·E 3	Midjourney v6	C SD-XL	👽 DeepFloyd-IF
Two bicycles leaning against a wall with three windows.				
VQAScore (Ours)	0.94	0.94	0.95	Q 0.96
	0.94 2.67	0.94 2.67	0.95 4.00	Q 0.96 Q 4.67

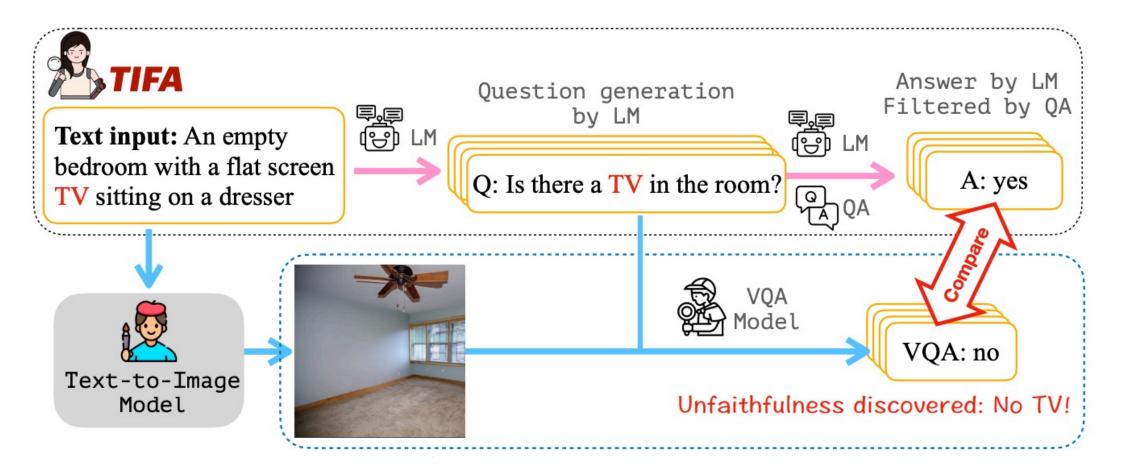
TIFA with Question Answering

Text Input: A person sitting on a horse in air over gate in grass with people and trees in background.

GPT-3 generated + verified QAs (pre-generated in TIFA v1.0 benchmark)				
Question: what is the animal?		? Answer inferred from text: horse		
VQA:	Horse 📀	Horse 🗸		
Question: is there a gate?		Answer inferred from text: yes		
VQA:	No 🔀	Yes 🗸		
Question: is t	he horse in air?	Answer inferred from text: yes		
VQA:	No 😣	Yes 🗸		
	Accur	racy on 14 questions		
M TIFA	71.4	< 100.0		
↓ ✓ I	Fine-Grained	✓Accurate ✓Interpretable		

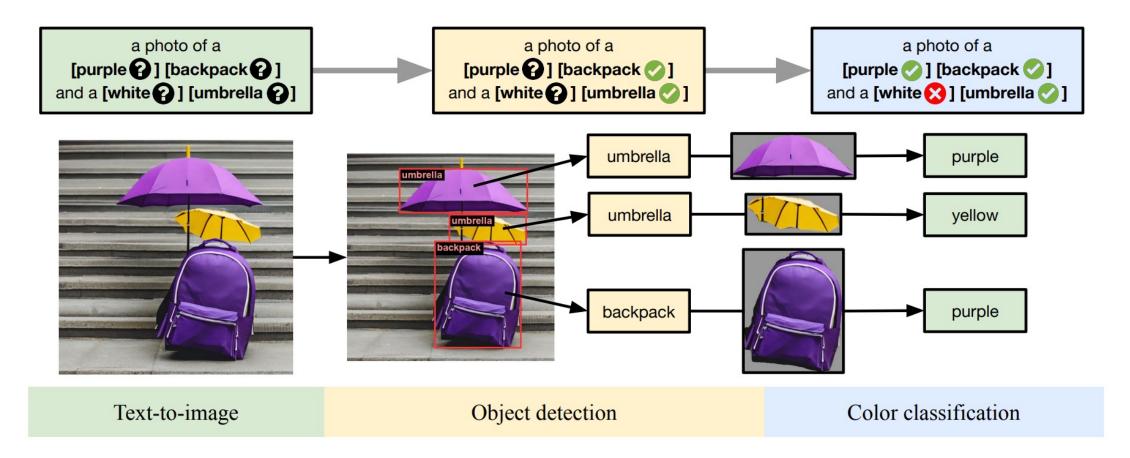
TIFA: Text-to-Image Faithfulness Evaluation with Question Answering Yushi Hu e al., 2023.

TIFA with Question Answering



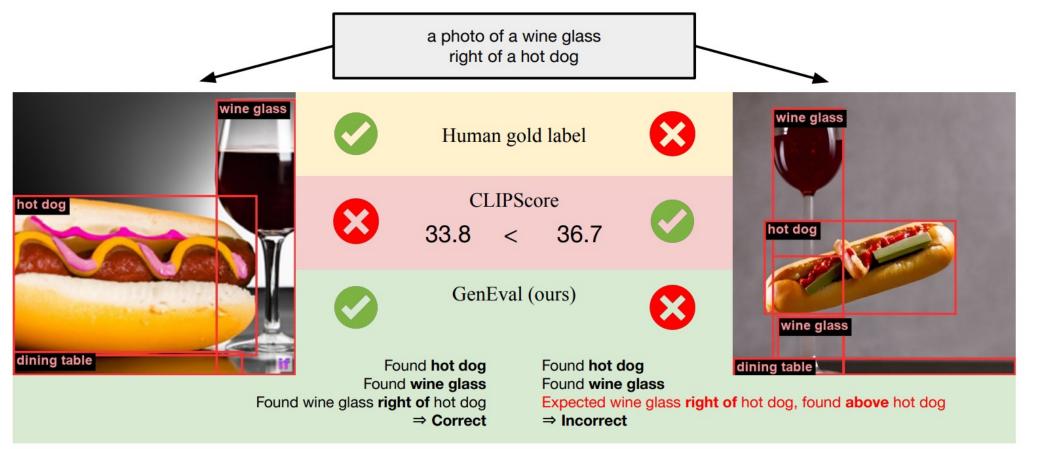
TIFA: Text-to-Image Faithfulness Evaluation with Question Answering Yushi Hu e al., 2023.

GenEval: Object-Focused Evaluation



GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment Dhruba Ghosh et al., 2023.

GenEval: Object-Focused Evaluation



GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment Dhruba Ghosh et al., 2023.

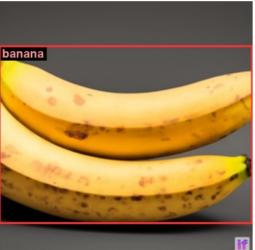
GenEval: Object-Focused Evaluation

Found red cake Found purple chair ⇒ Correct

Merging objects

a photo of two bananas

IF-XL



Found banana

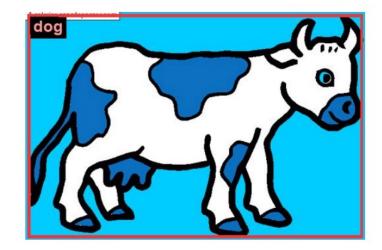
Found 1 banana

⇒ Incorrect

Artistic renders

a photo of a blue cow

CLIP retrieval



Found no cows ⇒ Incorrect

GenEval: An Object-Focused Framework for Evaluating Text-to-Image Alignment Dhruba Ghosh et al., 2023.

Which one shall we use?

How do we evaluate "evaluation metrics"?